Combinatorial control of meristem identity in maize inflorescences.

نویسندگان

  • Nicholas J Kaplinsky
  • Michael Freeling
چکیده

The architecture of maize inflorescences, the male tassel and the female ear, is defined by a series of reiterative branching events. The inflorescence meristem initiates spikelet pair meristems. These in turn initiate spikelet meristems which finally produce the floret meristems. After initiating one meristem, the spikelet pair and spikelet meristem convert into spikelet and floret meristems, respectively. The phenotype of reversed germ orientation1 (rgo1) mutants is the production of an increased number of floret meristems by each spikelet meristem. The visible phenotypes include increased numbers of flowers in tassel and ear spikelets, disrupted rowing in the ear, fused kernels, and kernels with embryos facing the base of the ear, the opposite orientation observed in wild-type ears. rgo1 behaves as single recessive mutant. indeterminate spikelet1 (ids1) is an unlinked recessive mutant that has a similar phenotype to rgo1. Plants heterozygous for both rgo1 and ids1 exhibit nonallelic noncomplementation; these mutants fail to complement each other. Plants homozygous for both mutations have more severe phenotypes than either of the single mutants; the progression of meristem identities is retarded and sometimes even reversed. In addition, in rgo1; ids1 double mutants extra branching is observed in spikelet pair meristems, a meristem that is not affected by mutants of either gene individually. These data suggest a model for control of meristem identity and determinacy in which the progress through meristem identities is mediated by a dosage-sensitive pathway. This pathway is combinatorially controlled by at least two genes that have overlapping functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A floret by any other name: control of meristem identity in maize.

The life of a plant unfolds as a series of developmental stages, with each stage defined by changes in meristem identity. In maize, there are several distinct stages: the transition from vegetative growth to flowering, the elaboration of the inflorescence, and the formation of flowers. Progress in understanding meristem identity and function has been made by analyzing maize mutants with defects...

متن کامل

Unraveling the KNOTTED1 regulatory network in maize meristems.

KNOTTED1 (KN1)-like homeobox (KNOX) transcription factors function in plant meristems, self-renewing structures consisting of stem cells and their immediate daughters. We defined the KN1 cistrome in maize inflorescences and found that KN1 binds to several thousand loci, including 643 genes that are modulated in one or multiple tissues. These KN1 direct targets are strongly enriched for transcri...

متن کامل

The control of axillary meristem fate in the maize ramosa pathway.

Plant axillary meristems are composed of highly organized, self-renewing stem cells that produce indeterminate branches or terminate in differentiated structures, such as the flowers. These opposite fates, dictated by both genetic and environmental factors, determine interspecific differences in the architecture of plants. The Cys(2)-His(2) zinc-finger transcription factor RAMOSA1 (RA1) regulat...

متن کامل

FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets.

Inflorescences of grass species have a distinct morphology in which florets are grouped in compact branches called spikelets. Although many studies have shown that the molecular and genetic mechanisms that control floret organ formation are conserved between monocots and dicots, little is known about the genetic pathway leading to spikelet formation. In the frizzy panicle (fzp) mutant of rice, ...

متن کامل

Class II tassel seed mutations provide evidence for multiple types of inflorescence meristems in maize (Poaceae).

The tassel seed mutations ts4 and Ts6 of maize cause irregular branching in its inflorescences, tassels, and ears, in addition to feminization of the tassel due to the failure to abort pistils. A comparison of the development of mutant and wild-type tassels and ears using scanning electron microscopy reveals that at least four reproductive meristem types can be identified in maize: the inflores...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 130 6  شماره 

صفحات  -

تاریخ انتشار 2003